Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Biol. Res ; 47: 1-12, 2014. ilus, graf, tab
Artigo em Inglês | LILACS | ID: biblio-950760

RESUMO

BACKGROUND: Interactions between genes and their products give rise to complex circuits known as gene regulatory networks (GRN) that enable cells to process information and respond to external stimuli. Several important processes for life, depend of an accurate and context-specific regulation of gene expression, such as the cell cycle, which can be analyzed through its GRN, where deregulation can lead to cancer in animals or a directed regulation could be applied for biotechnological processes using yeast. An approach to study the robustness of GRN is through the neutral space. In this paper, we explore the neutral space of a Schizosaccharomyces pombe (fission yeast) cell cycle network through an evolution strategy to generate a neutral graph, composed of Boolean regulatory networks that share the same state sequences of the fission yeast cell cycle. RESULTS: Through simulations it was found that in the generated neutral graph, the functional networks that are not in the wildtype connected component have in general a Hamming distance more than 3 with the wildtype, and more than 10 between the other disconnected functional networks. Significant differences were found between the functional networks in the connected component of the wildtype network and the rest of the network, not only at a topological level, but also at the state space level, where significant differences in the distribution of the basin of attraction for the G1 fixed point was found for deterministic updating schemes. CONCLUSIONS: In general, functional networks in the wildtype network connected component, can mutate up to no more than 3 times, then they reach a point of no return where the networks leave the connected component of the wildtype. The proposed method to construct a neutral graph is general and can be used to explore the neutral space of other biologically interesting networks, and also formulate new biological hypotheses studying the functional networks in the wildtype network connected component.


Assuntos
Schizosaccharomyces/fisiologia , Ciclo Celular/fisiologia , Quinases Ciclina-Dependentes/metabolismo , Redes Reguladoras de Genes/fisiologia , Modelos Biológicos , Schizosaccharomyces/genética , Gráficos por Computador , Simulação por Computador , Fase G1/fisiologia , Redes Neurais de Computação , Proteínas de Ciclo Celular/metabolismo , Biologia Computacional
2.
Biol. Res ; 40(4): 479-485, 2007. ilus
Artigo em Inglês | LILACS | ID: lil-484873

RESUMO

In the last twenty years an important effort in brain sciences, especially in cognitive science, has been the development of mathematical tool that can deal with the complexity of extensive recordings corresponding to the neuronal activity obtained from hundreds of neurons. We discuss here along with some historical issues, advantages and limitations of Artificial Neural Networks (ANN) that can help to understand how simple brain circuits work and whether ANN can be helpful to understand brain neural complexity.


Assuntos
Humanos , Cognição/fisiologia , Redes Neurais de Computação , Rede Nervosa/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA